
Distributed Primal-Dual Saddle Point Optimization
Applied to Elevator Group Control Systems

Jeroen Buitendijk and Jannes Hühnerbein
{jeroenb,hjannes}@ethz.ch

Abstract—Elevator group control presents an opportunity
for the application of distributed optimization algorithms. A
distributed approach to elevator group control could make the
system more robust to component failure, as the unaffected
elevators can continue operation when one of the controllers
fails to function. In this paper, we present a novel algorithm
based on distributed primal-dual saddle point optimization. This
algorithm is benchmarked against the ant colony optimization
algorithm, which is well estalished in the literature, as well as
two simple dispatching algorithms. All four algorithms were
implemented and simulated in a self-developed elevator group
control framework using models of people flows in buildings
which are well established in the literature. The developed
distributed controller outperforms the benchmark controllers for
some building sizes and elevator systems.

Index Terms—elevator group control systems, EGCS, primal-
dual saddle point optimization, distributed control, distributed
optimization, ant colony optimization

I. INTRODUCTION

For many people, the daily commute includes at least one
elevator ride. In the United States alone, elevators complete
18 billion passenger trips a year [1]. This makes the elevator
one of the most common modes of transport. Minimizing the
time spent on elevators or waiting for one can therefore have
a significant positive impact on the quality of life of millions
of commuters.

It is possible to describe this problem, which is known as
the elevator dispatch problem, as a mixed-integer problem.
However, this problem formulation is NP-hard and therefore
ill-suited to real-time control. Furthermore, it is difficult to
implement in a distributed manner [2]. Therefore, this paper
is focused on non-optimal elevator group control algorithms
which nonetheless show acceptable performance and can be
implemented in a distributed manner. Four non-optimal algo-
rithms are presented. The first algorithm is a self-developed
algorithm based on distributed primal-dual saddle point opti-
mization (DPDSP) [3]. The second algorithm is a well estab-
lished elevator group control algorithm based on ant colony
optimization (ACO) [4]. In addition, two simple heuristic-
based algorithms are introduced to serve as a benchmark:
a “first in, first out” (FIFO) algorithm and a self-developed
algorithm based on observations in small and medium sized
buildings, which we named “classic elevator dispatching”
(CED).

Both the two simple algorithms (FIFO and CED) and
the two more advanced algorithms (DPDSP and ACO) are
implemented in a simulation framework using MATLAB. Then,

the performance of all four algorithms is examined and com-
pared. This allows us to qualify the performance of our novel
distributed control scheme through a quantitative comparison
with a well-established control scheme (ACO) and simple
heuristics-based control schemes.

II. ELEVATOR GROUP DISPATCHING PROBLEM

An elevator group is a set of elevators which are controlled
in a coordinated manner. Elevators are dispatched in response
to a person registering a hall call. In principle, there are many
different ways in which the elevator group can respond to hall
calls and the chosen control scheme will have a significant
effect on the speed and efficiency of transportation within
the building and on user satisfaction. The question of what
control scheme is best adopted is known as the elevator group
dispatching problem [5].

The formulation of the elevator group dispatching problem
depends on a number of factors. First, it is impacted by the
architecture of the building and the installed elevator system as
well as the occupants of the building. Second, the information
structure of the elevator group dispatching problem may be
different from one system to another. Conventionally, there
are two hall call buttons on every level except for the first
and the last level. When a user registers a hall call, he only
provides the information of which direction he wishes to travel
in. The number of people waiting on a particular floor and the
destination of the people are not known to the control system.
Alternatively, an information structure known as destination
hall call registration (DHCR) can be applied. In this case,
each user specifies their destination at the moment that they
register a hall call. As this increases the available information,
this DHCR allows for the formulation of a broader range of
controllers, thus potentially improving performance. Finally,
the elevator group dispatching problem may be subject to
additional constraints arising from psychological or economic
considerations. For example, while direction reversals are
known to increase the efficiency of the elevator group control
system, they usually cause users discomfort [2], [5].

Considering the problem structure, it is natural to formulate
the elevator group dispatching problem as a mixed-integer
problem where a cost function is chosen that maximizes utility
to the user or the operator. This approach would make it
possible to find a trajectory for the elevators whose global
optimality is constrained only by the uncertainty of future
events. However, the computational complexity of such a
mixed-integer problem would be exponential, rendering this

1

mailto:jeroenb@ethz.ch
mailto:hjannes@ethz.ch

solution impractical for real-time control of an elevator group
[2], [5]. Instead, a less ideal but computationally cheaper
control scheme needs to be implemented. A number of so-
lutions to this problem have been published in literature,
including controllers based on ant colony optimization [4],
fuzzy logic controllers [6], controllers based on particle swarm
optimization [7], controllers based on neural networks [8],
controllers based on genetic network programming and others
[9].

In this paper, we do not consider a particular information
structure or a particular set of additional constraints a priori;
rather, we introduce them with the particular elevator group
control scheme (EGCS) we are implementing.

III. ALGORITHMS

A. Distributed Primal-Dual Saddle Point Optimization
(DPDSP)

In this paper, we present a novel algorithm for elevator
group control. Our algorithm is adapted to a distributed
system, where each elevator has a separate controller and the
controllers are connected through a network.

At the core of our algorithm is a distributed optimization
problem which allows us to define the destinations of all of
the elevators in the EGCS. Let y ∈ Rn be variable that we
optimize. The dimension n of y is given by the number of
elevators. Let yi ∈ Rn be controller i’s local estimate of y.
The optimization problem is then given by

min
y∈Rn

f(y) =

n∑
i=1

fi(y), (1)

where fi : Rn −→ R is a private cost function known
only to controller i and f(y) is the cost function of the entire
network of controllers (i.e. the cost function of the EGCS)
[3]. However, equation (1) requires that every controller i has
knowledge of the variable that is optimized, y, which is not
given in the case of a network of distributed controllers with
private cost functions. Rather, each controller i has its own
estimate yi ∈ Rn of the elevator destinations. To ensure that
every controller converges to the same solution, a consensus
constraint is added to the problem formulation [3].

The consensus constraint C(y) is constructed by exploiting
the graph structure of the controller network. Each controller
with its private cost function fi(·) and its estimate yi is
represented by a node on the graph. Any two controllers
which can communicate are connected by an edge on the
graph. The controllers communicate their local estimates yi
to neighboring controllers. All communication links are as-
sumed to be identical and bidirectional, which results in an
unweighted undirected graph. This allows us to define the
consensus constraint using the graph Laplacian [3]:

C(y) = Ly = 0, (2)
where L is the graph Laplacian, y ∈ Rn is the vector

of estimates yi and 0 is the zero vector. The consensus
constraint ensures that all local estimates yi are equal when the

algorithm converges and implicitly communicates the private
cost functions fi(·) of the other controllers. Equations (1) and
(2) allow us to formulate the distributed optimization problem:

min
yi∈Rn

f̃(y) =

n∑
i=1

fi(yi),

s.t. Ly = 0.

(3)

In order for this problem to be solvable using the distributed
primal-dual saddle-flow algorithm, we require that each private
cost function fi(·) is strictly convex and twice continuously
differentiable. The primal-dual saddle-flow algorithm can then
be expressed as

ẏ = −∂
∂
f̃(y)− Ly − Lλ,

λ̇ = Ly,
(4)

where λ is the dual variable [3]. For individual controllers,
equation (4) becomes

ẏi = − ∂

∂yi
fi(yi)−

n∑
j=1

aij(yi − yj)−
n∑
j=1

aij(λi − λj),

λ̇i =

n∑
j=1

aij(yi − yj),

(5)
where aij is an element of the Laplacian matrix and

λi ∈ Rn is the estimated dual variable of controller i. In
our simulation, we implemented equations (5) using Euler
discretization [3].

In our algorithm, each private cost function fi(·) depends
on three factors: the destinations of the people on board the
elevator, the locations of people who have called an elevator,
and the positions of the other elevators. The first two factors
attract the elevator while the third factor pushes the elevator to
avoid the other elevators. In order to develop a strictly convex
local cost function fi(·), we formulate the third factor as a
point within the building that attracts elevator i away from the
other elevators and distributes them throughout the building.
In order to find such a point, we first calculate the average
position of the other elevators weighted by their free capacity.
Next, we determine the point in the building which is the
furthest away from this weighted average under the assumption
that the top floor is considered adjacent to the ground floor (i.e.
the levels of the building are treated as points on a circle).
This is always the point that lies within the building and is
half the building height away from the weighted average of
the positions of the other elevators. We call this point x̄elevi

and the weight given by the total free capacity of the other
elevators welevi .

We can now formulate a twice differentiable strictly convex
cost function fi(·) for each elevator. Let x̄desti ∈ Rd be the
vector of the destinations of the people on board elevator i
and let wdesti be the vector of the time that each passenger has
already been waiting since submitting a hall call. Let x̄origini ∈
Ro be the vector of locations of people waiting for an elevator

2

ride and let worigini be the vector of the time that each person
has been waiting multiplied by the free capacity of elevator
i divided by the total number of people waiting. Finally, let
xmi = yi(i)⊗ 1m be a vector of length m where every entry
is the destination of elevator i. The local cost function is then
defined as

fi(yi) = kelev(x1i − xelevi)Twelevi I1(x1i − xelevi)

+ kdest(xdi − xdesti)Twdesti Id(xdi − xdesti)

+ korigin(xoi − x
origin
i)Tworigini Io(xoi − x

origin
i),

(6)

where kelev, kdest, and korigin are weights on the relative
contribution of each factor. They can be used to tune the
algorithm for different buildings.

When the controller applies the distributed primal-dual
saddle point algorithm (3) with cost function (6), the desti-
nation assigned to each elevator will usually not be an integer
value. Therefore, rather than navigating to the exact location
suggested by the algorithm, the elevator will navigate to the
closest floor that either has people waiting to be picked up or
is the destination of a passenger of the elevator.

The algorithm is executed in regular time intervals and
the destinations are updated accordingly. This means that the
destination can be updated before the elevator reaches its
previous destination.

B. Ant Colony Optimization (ACO)

1) Description: Ant colony optimization algorithms (ACO)
are probabilistic, non-optimal algorithms that determine good
paths through a graph [4]. In this case, the graph’s nodes are
given by passengers calling an elevator and by the elevators
themselves. Once passengers have boarded an elevator, their
desired destinations become nodes, too. The edges between
nodes are weighted and describe the journey from an elevator
to a certain call or from one call to another. This is roughly
equivalent to the journey between two floors of the building
[4].

The operating principle of the ACO algorithm can be
described using the ant colony analogy. In this analogy the
ants (elevators) each have to find the shortest path through a
given graph (consisting of calls and elevators). They do so by
following pheromones emitted by ants who have previously
passed through the graph. Thus, at each node the ant chooses
which edge to take next based on the pheromone intensity of
the respective edges [4].

The pheromone intensity distribution used to navigate the
ant is determined iteratively by simulating hundreds of ants
passing through the graph. Each simulated ant takes the
pheromones emitted by previous ants into account and emits
pheromones itself depending on the cost of the path it took
[4].

This process converges to a pheromone distribution among
the edges. Based on this distribution, each call can be assigned
to an elevator [4].

2) Mathematical Formulation: The mathematical formu-
lation of the ACO algorithm was based on [10] and [11].
The algorithm consists of computing the probability for each
elevator to serve a certain floor and updating the pheromone
distribution.

a) Pheromone Update: The core part of the ant colony
optimization algorithm is updating the pheromone distribution.
τij denotes the pheromone intensity that node i has from the
perspective of ant j. After each iteration the pheromones are
updated according to the following rule.

τij(t+ 1) = ρτij(t) + ∆τkij (7)

Here, ρ ∈ (0, 1) is a constant coefficient. The incremental
pheromone change ∆τkij is computed as follows.

∆τkij =

{
C/Γk if path ij was passed
0 otherwise

(8)

C is a constant coefficient and Γk denotes the global cost
of the kth cycle of the algorithm. Hence, the pheromone τij
receives a positive increment if an ant chose to take path ij
in this iteration.

b) Random Proportion Rule: The random proportion rule
is given by [11] as

pkij =

(τij)

α(ηij)
β∑

j(τij)
α(ηij)β

j ∈ allowedk

0 j /∈ allowedk

(9)

Here, pkij is the probability that elevator i chooses node j as
its next destination. The index k denotes the current iteration
step of the algorithm. ηij = 1/Γkij where Γkij is the local cost
for elevator i to serve node j.

The probability distribution in the final iteration pKij is used
to dispatch the elevators.

c) Cost Function: In the previous paragraph two cost
functions were used. The global cost and the local cost.

The local cost is defined as

Γkij = ∆lij + ∆dij (10)

where ∆lij is the number of floors that need to be overcome
between i and j. ∆dij is zero if elevator i does not need to
turn around in order to serve j and takes a constant positive
value in case a change of heading is needed.

The global cost is merely the sum of all relevant local costs
in the respective iteration k.

Γk =
∑

passed ij

Γkij (11)

Note, that only paths that were actually passed by an ant
are included in the global cost.

3

3) Implementation: Figure 1 shows a flow chart of the
implemented the ant colony optimization algorithm [11].

Start

Initialize Simulation

Update Calls

Move Elevators
Let People Go & Board

Initialize Pheromones

YES

Number of Iterations
Reached?

NO

Update Pheromones

Calculate State Transition
Probability for each Edge

Choose Optimal
Dispatching

Update local Cost for
each Edge

Compute Global Cost

Fig. 1. Ant Colony Optimization Implementation

4) Distributed Aspects: While the algorithm is often imple-
mented in a centralized manner, it is worth noting that parts
of the ant colony optimization algorithm can be implemented
in a distributed fashion.

To stay within the analogy, each ant can decide on its own
which path to take relying on the pheromones emitted by
previous ants. Since these “previous ants” are simulated this
decision can be made by each elevator individually.

To implement this algorithm in a distributed manner, suffi-
cient knowledge about the graph and the local cost function
of each elevator need to be shared across all agents. Then, the
random proportion rule (9) and the pheromone update (7) can
be done by each elevator individually.

In very large building complexes with dozens of elevators
this approach might have a practical advantage over a central-
ized controller. However, cost functions and exceptions have

to be handled very carefully to balance the computational
complexity with the benefits of a more complex controller.

C. First In, First Out (FIFO)

1) Description: The FIFO algorithm is the most simple ele-
vator dispatch algorithm. Its underlying mechanism is equiva-
lent to the “first come, first serve” principle. When a passenger
calls an elevator the call is assigned to the elevator whose
current final destination is closest to the caller’s floor. Once
the passenger boards the elevator and registers his destination,
that destination is also simply added to the respective elevator’s
queue of destinations.

There are obvious improvements that can be made to this
algorithm. However, it was implemented in this very simple
fashion to serve as a point of comparison for the more
advanced algorithms.

2) Implementation: Implementing the FIFO algorithm is
straightforward. Each elevator has a list of destinations called
the “schedule”. When a person calls or boards an elevator a
new destination is added to the end of the schedule. Destina-
tions are removed from the beginning of the schedule when
the elevator has reached the respective floor.

Algorithm 1 First In, First Out

for i = 1, · · · , npassengers do
if passengeri is waiting then

e← closest elevator to passengeri
schedulee ← [schedulee, origin of passengeri]

end if
if passengeri has boarded then

e← elevator passengeri is in
schedulee ← [schedulee, destination of passengeri]

end if
end for

D. Classic Elevator Dispatching (CED)

1) Description: The “classic elevator dispatching” algo-
rithm (CED) was self-developed based on everyday observa-
tions. At its core, this algorithm also applies a “first come,
first serve” principle. However, some simple exceptions were
added.

CED presents an extension to the FIFO algorithm in that
each elevator can add stops between its current position and
its current destination at any time. Additionally, the schedule
is periodically re-sorted in increasing or decreasing order
depending on the direction of travel. This way, people can
be picked up and dropped off “on the way” even though they
called or boarded the elevator later than someone else.

2) Implementation: The implementation of the CED algo-
rithm was based on the FIFO algorithm. The extensions that
were made mainly concern the way the “closest” elevator is
determined. In contrast to FIFO, CED also considers elevators
that pass by the respective passenger instead of only looking
at the final destination.

4

Algorithm 2 Classic Elevator Dispatching

for i = 1, · · · , npassengers do
if passengeri is waiting then

e← elevator passing passengeri
if e is empty then

e← closest elevator to passengeri
end if
schedulee ← [schedulee, origin of passengeri]

end if
if passengeri has boarded then

e← elevator passengeri is in
schedulee ← [schedulee, destination of passengeri]

end if
end for
schedules ← sort(schedules)

IV. SIMULATION ENVIRONMENT

A custom-made simulation environment implemented in
MATLAB serves as a testbed for the implemented controllers.
Through its modular design, it can easily be adapted for
different building architectures and extended to include more
controllers. The environment includes a model of passenger
flow within a building which was obtained from the literature.
The model randomly generates passenger arrivals according to
a batch Poisson process as described by Chaosangket et al. The
batch size is a function of the time of day and therefore the
operation mode of the building [12]. Each generated person
is assigned an origin floor and a destination floor which are
random variables sampled from a probability distribution as
described by Qiu et al. and others [13]–[15]. The discrete
probability density function of the origin floor is given by

origin(1) = X, (12)
origin(i) = (Y + Z)ξi(i = 2, 3, ..., N), (13)

ξi =
pop(i)∑N
i=2 pop(i)

, (14)

where pop(i) is the number of people on floor i, X is
the percentage of up-traffic, Y is the percentage of down-
traffic and Z is the percentage of inter-floor traffic [13].
The probability density function of the destination floor is
conditional on the origin floor. It can be represented as the
origin-destination matrix

OD =

od(1, 1) od(1, 2) · · · od(1, N)
od(2, 1) od(2, 2) · · · od(2, N)

...
...

. . .
...

od(N, 1) od(N, 2) · · · od(N,N)

 , (15)

where od(i, j) is the probability that the destination floor is
floor j given that the origin floor is floor i [13]. The elements
of the matrix depend on the target floor. For up-traffic, they
are given by

od(1, j) =

0 j = 1

ξi j = 2, 3, · · · , N
. (16)

For down-traffic, they are given by

od(i, 1) =

0 i = 1

Y
Y+Z i = 2, 3, · · · , N

. (17)

For inter-floor traffic, they are given by

od(i, j) =

0 i = j

Zηij
Y+Z i 6= j

, (18)

ηij =
pop(j)∑N

i=2,i6=j pop(i)
. (19)

The model of the passenger traffic can be adapted to
different buildings and the different operating modes which
occur at different times throughout the day by adjusting the
parameters X , Y , and Z as well as the Poisson intensity λ.
Typically, traffic in large buildings follows a similar pattern:
there is a pronounced up-traffic peak in the morning and a
less pronounced down-traffic peak in the afternoon. Usually
there are two more peaks around noon. Throughout the day,
inter-floor traffic plays a larger role [12]–[16]. The batch size
also changes throughout the day: in the morning, the batch
size is close to one while it is larger around noon [12]. We
were guided by the referenced literature in our choice of these
tuning parameters.

V. SIMULATION RESULTS

To compare the algorithms four different building setups
were used (see table I).

TABLE I
SIMULATION SETUPS

Setup #1 Setup #2 Setup #3 Setup #4
floors 5 20 120 120

elevators 1 10 30 10

These setups were chosen to cover a wide range of buildings
varying in size and elevator to floor ratio. Note that the DPDSP
algorithm is not compatible with only a single elevator. Hence
the lack of results for setup #1. Also, due to the longer run
time of the DPDSP algorithm, the averages were taken over a
smaller number of runs.

The compared metrics are throughput (in people per hour),
average waiting time (in seconds) and average journey time
(in seconds).

Note that waiting time and journey time are not being
normalized and can therefore only be compared within the

5

same experimental setup. Furthermore, the simulation envi-
ronment uses a step size of 10s meaning that each transition
from one floor to the next and each on-boarding/off-boarding
process takes 10s. Since the main goal is to compare different
algorithms this choice was made arbitrarily. With modern
elevators reaching speeds of more than 20m/s [17], much
smaller waiting and journey times can be expected in a
real-world implementation, which also increases the overall
throughput. This effect, however, applies to all algorithms.
Therefore, a comprehensive comparison between algorithms is
admissible even while neglecting the actual elevator velocity.

A. Throughput

The average throughput of an elevator group is the most
important metric. A high throughput minimizes the risk of
congestion and generally correlates with the overall perfor-
mance of the system.

Results for each setup and control algorithm can be found
in table II.

TABLE II
THROUGHPUT

Setup #1 Setup #2 Setup #3 Setup #4
FIFO 8 60 97 27
CED 44 660 168 55
ACO 181 448 375 131

DPDSP – 653 383 172
in people / hour

The results show that for setup #1 (5 floors, 1 elevator) the
ant colony optimization algorithm yields far better results than
the simple algorithms. The same statement is true for setup #3
and #4. However, in setup # 2 (20 floors, 10 elevators), the
classic elevator dispatching algorithm yields the best through-
put among all algorithms. One possible explanation would
be that the ACO and DPDSP algorithms are well suited for
buildings with a high floor to elevator ratio. In such buildings,
which are desirable from an economic perspective, a small
number of elevators have to serve a large number of floors.
This is the domain of complex elevator group control systems,
and our simulation results show that the DPDSP algorithm
performs well in such a scenario, outperforming even the ACO
algorithm.

The performance gap is even greater in setup #4 than in
setup #3. While in setup #3 the ACO algorithm has a 2.2
times larger throughput than CED, the ACO performance is
2.4 times larger than the CED performance in setup #4. Hence,
the relative ACO throughput indeed slightly increases when
increasing the floor to elevator ratio. The same statement holds
for the DPDSP algorithm.

B. Average Waiting Time

The waiting time is defined as the time measured from the
moment a passenger calls an elevator to the instance when the
passenger is picked up. Waiting time could be considered part
of the overall journey time. However, when deciding which

objectives to set, waiting time can play a separate role due to
its psychological impact.

TABLE III
AVERAGE WAITING TIME

Setup #1 Setup #2 Setup #3 Setup #4
FIFO 40 124 568 552
CED 121 112 390 461
ACO 122 190 362 374

DPDSP – 286 137 142
in seconds

Table III shows the average waiting time across all pas-
sengers that have called and boarded an elevator within the
simulated time horizon.

Despite its very poor throughput, the FIFO algorithm
achieves a fairly low average waiting time, especially in the
smaller buildings of setup #1 and #2. This is to be expected
because no intermediate stops are made when a passenger is
picked up.

Another noteworthy observation is that the ACO and CED
algorithms have similar average waiting times in setups #1, #3
and #4. At the same time, the ACO algorithm manages a 2-4
times larger throughput performance.

The fact, that for setup #3 and #4, the DPDSP algorithm has
the lowest waiting time while achieving the highest throughput
suggests that it might be the most optimal algorithm for large
buildings.

C. Average Journey Time

The average journey time (table IV) is computed among
all passengers that have boarded an elevator and successfully
reached their destination.

TABLE IV
AVERAGE JOURNEY TIME

Setup #1 Setup #2 Setup #3 Setup #4
FIFO 93 201 850 1054
CED 330 295 749 836
ACO 163 306 606 775

DPDSP – 391 290 322
in seconds

Again, for smaller buildings FIFO achieves the lowest
journey times since it always takes the direct way. In contrast
to waiting times, the journey times of ACO and CED are not as
similar. For setups #1, #3 and #4 ACO has significantly lower
journey times while maintaining a 2-4 times higher throughput.

The DPDSP algorithm maintains a journey time roughly
50% lower than the ACO algorithm for setups #3 and #4.
This solidifies the hypothesis that this algorithm is the best
choice for high buildings.

VI. CONCLUSION

The simulation results clearly show that as soon as elevator
resources are sparse, complex elevator dispatch algorithms
achieve far better results than simple heuristics.

6

The self-developed distributed primal-dual saddle point
optimization algorithm (DPDSP) achieves a slightly higher
throughput than the ant colony optimization algorithm. At
the same time it also manages to keep waiting and journey
times around 50% lower. This suggests that the new DPDSP
algorithm can deliver good control performance and that it
could be a candidate for a distributed elevator group control
system. However, a broader choice of performance metrics
such as maximum waiting and journey time should be exam-
ined before making such a definite statement. Nonetheless, the
metrics taken in this paper prove functionality of the algorithm
and show that its basic performance can keep up with well-
established algorithms.

REFERENCES

[1] National Elevator Industry Inc. Fact sheet. https:
//nationalelevatorindustry.org/wp-content/uploads/2019/02/Fact-Sheet.
pdf, 2019. Accessed: 2021-06-25.

[2] Y. Wu and S. Tanaka. A mixed-integer programming approach to group
control of elevator systems with destination hall call registration. In
2020 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), pages 26–31, 2020.

[3] Wenjun Mei Florian Dö rfler, Mathias Hudoba de Badyn. Lecture notes
in advanced topics in control, May 2021.

[4] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony
optimization. IEEE Computational Intelligence Magazine, 1(4):28–39,
2006.

[5] Paul E. Utgoff and Margaret E. Connell. Real-time combinatorial opti-
mization for elevator group dispatching. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 42(1):130–146,
2012.

[6] M.M. Rashid, Nahrul A. Rashid, Alias Farouq, and Md. Ataur Rahman.
Design and implementation of fuzzy based controller for modern ele-
vator group. In 2011 IEEE Symposium on Industrial Electronics and
Applications, pages 63–68, 2011.

[7] Luo Fei, Zhao Xiaocui, and Xu Yuge. A new hybrid elevator group
control system scheduling strategy based on particle swarm simulated
annealing optimization algorithm. In 2010 8th World Congress on
Intelligent Control and Automation, pages 5121–5124, 2010.

[8] Weipeng Liu, Ning Liu, Hexu Sun, Guansheng Xing, Yan Dong, and
Haiyong Chen. Dispatching algorithm design for elevator group control
system with q-learning based on a recurrent neural network. In 2013
25th Chinese Control and Decision Conference (CCDC), pages 3397–
3402, 2013.

[9] Hoon Heo, Shingo Mabu, Kotaro Hirasawa, and Jinglu Hu. Elevator
group supervisory control system with destination floor guidance system
using genetic network programming. In 2006 SICE-ICASE International
Joint Conference, pages 5489–5493, 2006.

[10] Yu Le, Yang Shifeng, Li Huanhuan, Lv Zhicheng, and Hao Xiaobing.
Research on elevator group optimal dispatch based on ant colony
algorithm. In 2020 International Conference on Artificial Intelligence
and Electromechanical Automation (AIEA), pages 99–102, 2020.

[11] Jing-long Zhang, Jie Tang, Qun Zong, and Jun-fang Li. Energy-saving
scheduling strategy for elevator group control system based on ant
colony optimization. In 2010 IEEE Youth Conference on Information,
Computing and Telecommunications, pages 37–40, 2010.

[12] Nathaporn Chaosangket, Pruk Sasithong, Sanika K. Wijayasekara, Wid-
hyakorn Asdornwised, Lunchakorn Wuttisittikulkij, Pisit Vanichchanunt,
and Muhammad Saadi. A simulation tool for vertical transportation
systems using python. In 2018 5th International Conference on Business
and Industrial Research (ICBIR), pages 270–275, 2018.

[13] JianDong Qiu and ZhaoYuan Jiang. The research and simulation
on the elevator group control system scheduling algorithm. In 2011
International Conference on Electrical and Control Engineering, pages
1346–1349, 2011.

[14] Lijun Fu and Tiegang Hao. Analysis and simulation of passenger flow
model of elevator group control system. In 2012 9th International
Conference on Fuzzy Systems and Knowledge Discovery, pages 2353–
2356, 2012.

[15] Pingli Wang, Gongxuan Zhang, and Ling Wang. Simulation of
customers-flow model based-on elevators group control technique. In
First International Multi-Symposiums on Computer and Computational
Sciences (IMSCCS’06), volume 1, pages 568–571, 2006.

[16] ChangBum Kim, K.A. Seong, Hyung Lee-Kwang, and J.O. Kim. Design
and implementation of a fuzzy elevator group control system. IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, 28(3):277–287, 1998.

[17] Jane Sit Jenni Marsh. Shanghai tower picks up 3 guinness world
records including fastest elevator. https://edition.cnn.com/style/article/
worlds-fastest-tower/index.html, 2017. Accessed: 2021-07-02.

7

https://nationalelevatorindustry.org/wp-content/uploads/2019/02/Fact-Sheet.pdf
https://nationalelevatorindustry.org/wp-content/uploads/2019/02/Fact-Sheet.pdf
https://nationalelevatorindustry.org/wp-content/uploads/2019/02/Fact-Sheet.pdf
https://edition.cnn.com/style/article/worlds-fastest-tower/index.html
https://edition.cnn.com/style/article/worlds-fastest-tower/index.html

	Introduction
	Elevator Group Dispatching Problem
	Algorithms
	Distributed Primal-Dual Saddle Point Optimization (DPDSP)
	Ant Colony Optimization (ACO)
	Description
	Mathematical Formulation
	Implementation
	Distributed Aspects

	First In, First Out (FIFO)
	Description
	Implementation

	Classic Elevator Dispatching (CED)
	Description
	Implementation

	Simulation Environment
	Simulation Results
	Throughput
	Average Waiting Time
	Average Journey Time

	Conclusion
	References

